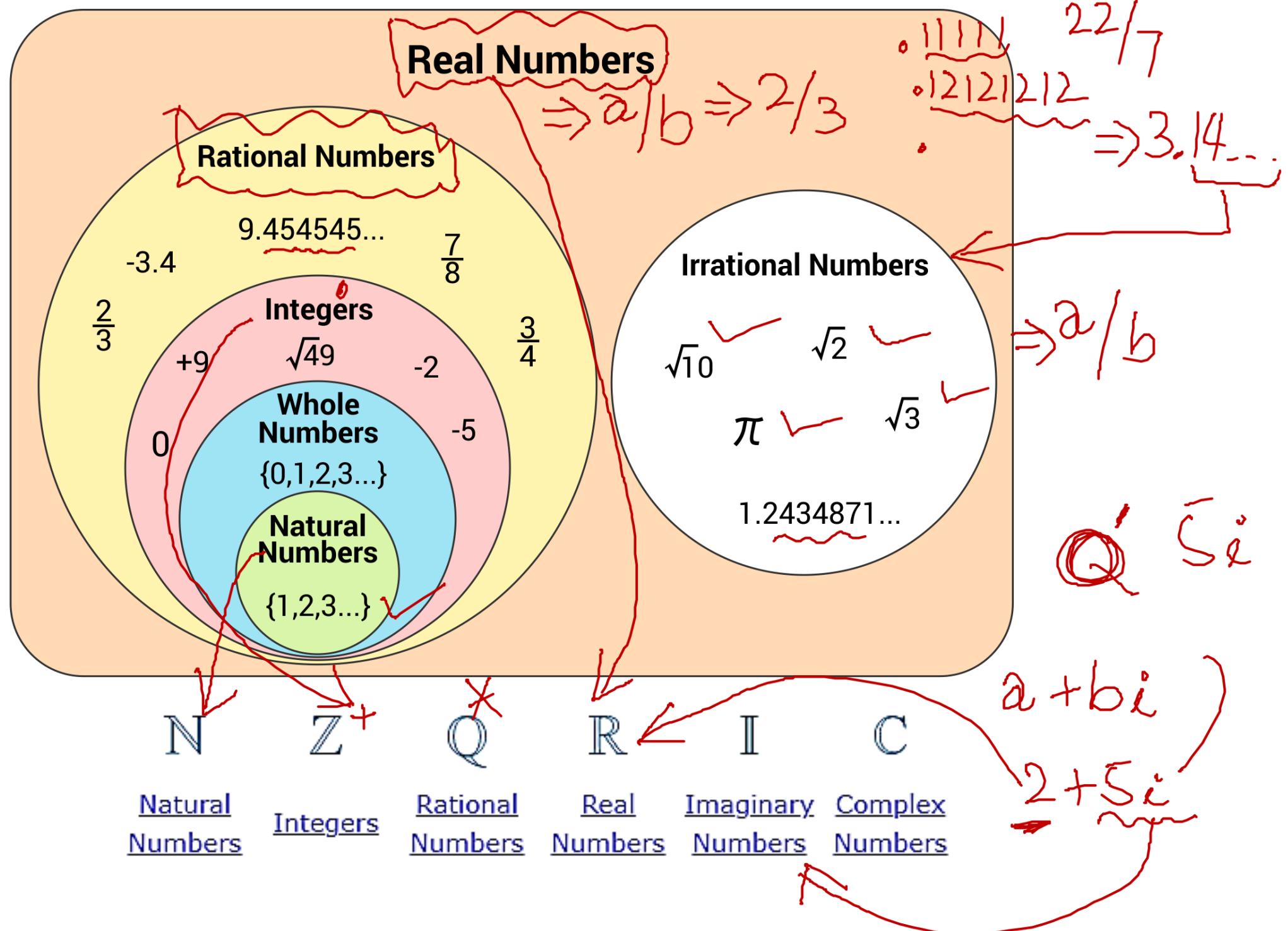


Set Theory

A **set** is an unordered collection of distinct objects, called elements or members of the set. A set is said to contain its elements. We write $a \in A$ to denote that a is an element of the set A . The notation $a \notin A$ denotes that a is not an element of the set A .

- The set V of all vowels in the English alphabet can be written as $V = \{a, e, i, o, u\}$
- The set O of odd positive integers less than 10 can be expressed by $O = \{1, 3, 5, 7, 9\}$.
- The set of positive integers less than 100 can be denoted by $\{1, 2, 3, \dots, 99\}$



How to describe a set by saying what properties its members have.

Descriptive Form	Set - Builder Form	Roster Form
1 The set of all vowels in English alphabet	$\{ x \mid x \text{ is a vowel in the English alphabet} \}$	$\{a, e, i, o, u\}$
2 The set of all odd positive integers less than or equal to 15	$\{ x \mid x \text{ is an odd number and } 0 < x \leq 15 \}$	$\{1, 3, 5, 7, 9, 11, 13, 15\}$
3 The set of all positive cube numbers less than 100	$\{ x \mid x \text{ is a cube number and } 0 < x < 100 \}$	$\{1, 8, 27, 64\}$

$$O = \{x \mid x \text{ is an odd positive integer less than } 10\}, \quad O = \{1, 3, 5, 7, 9\}$$

or, specifying the universe as the set of positive integers, as

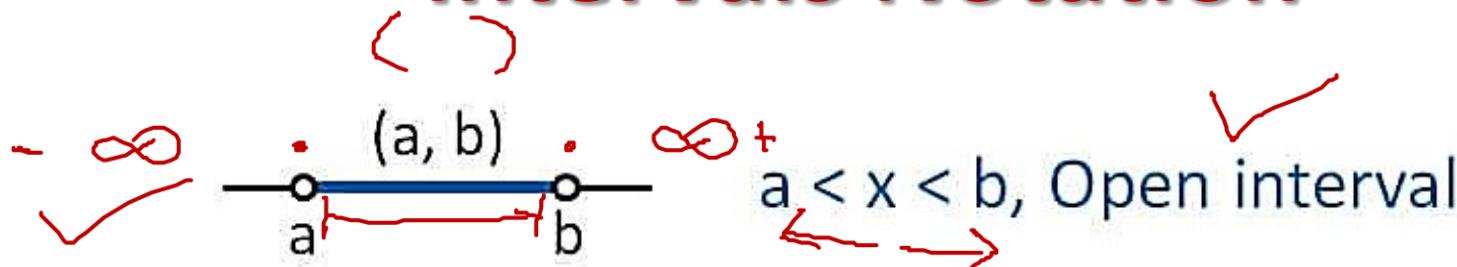
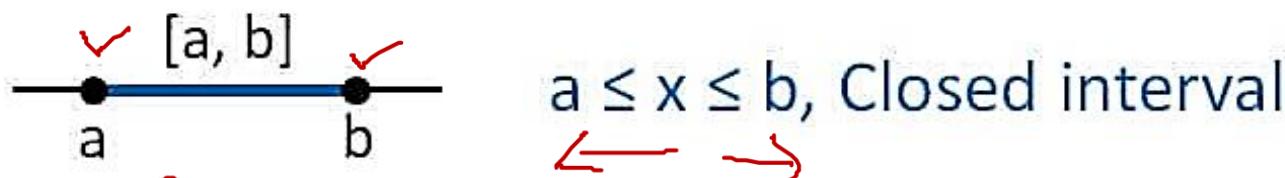
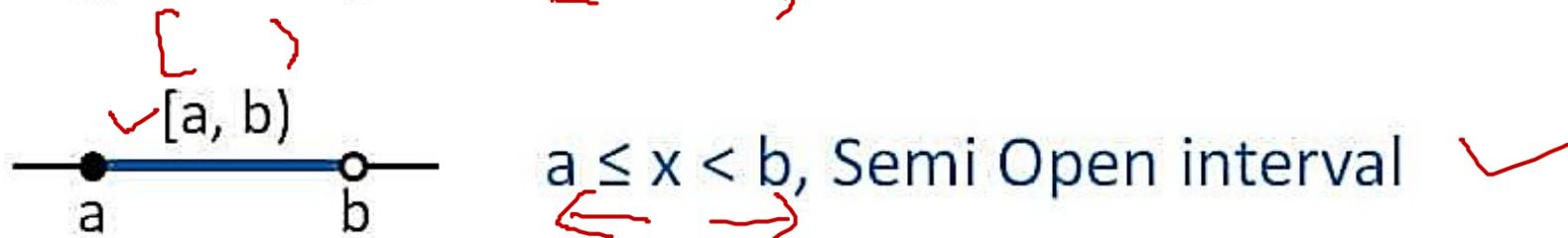
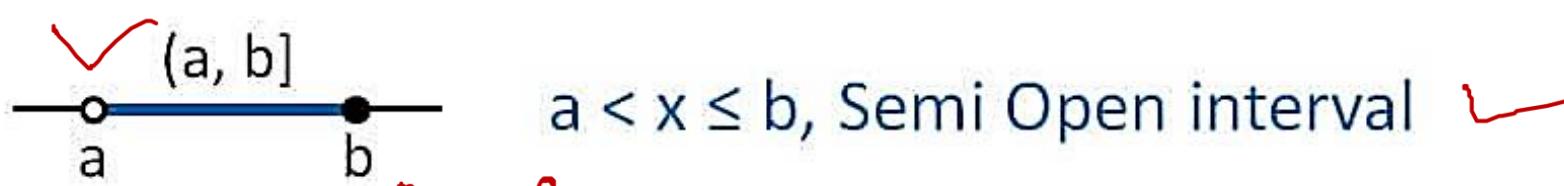
$$O = \{x \in \mathbb{Z}^+ \mid x \text{ is odd and } x < 10\}.$$

We often use this type of notation to describe sets when it is impossible to list all the elements of the set. For instance, the set \mathbb{Q}^+ of all positive rational numbers can be written as

$$\mathbb{Q}^+ = \{x \in \mathbb{R} \mid x = \frac{p}{q}, \text{ for some positive integers } p \text{ and } q\}.$$

$$\Rightarrow a/b$$

Intervals Notation

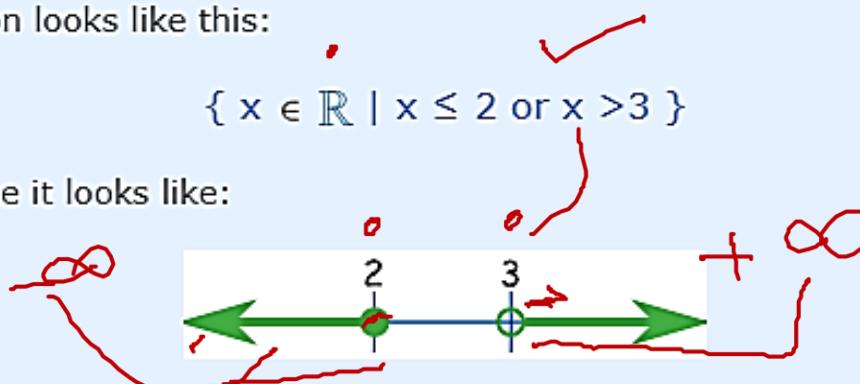


Example: $x \leq 2$ or $x > 3$

Set-Builder Notation looks like this:

$$\{ x \in \mathbb{R} \mid x \leq 2 \text{ or } x > 3 \}$$

On the Number Line it looks like:



Using Interval notation it looks like:

$$(-\infty, 2] \cup (3, +\infty)$$

Types of Set

1

Finite Set ✓

A set which contains a definite number of elements is called a finite set.

$$V = \{a, e, i, o, u\}$$

Example – $S = \{x \mid x \in \mathbb{N} \text{ and } 70 > x > 50\}$

2

Infinite Set ✓

A set which contains infinite number of elements is called an infinite set.

Example – $S = \{x \mid x \in \mathbb{N} \text{ and } x > 10\}$ $\dots \infty$

3

Subset

A set X is a subset of set Y (Written as $X \subseteq Y$) if every element of X is an element of set Y.

Example 1 – Let, $X = \{1, 2, 3, 4, 5, 6\}$ and $Y = \{1, 2\}$. $Z = \{1, 2, 3, 4, 5, 6\}$ ✓

Here set Y is a subset of set X as all the elements of set Y is in set X. Hence, we can write $Y \subseteq X$.

Example 2 – Let, $X = \{1, 2, 3\}$ and $Y = \{1, 2, 3\}$.

Here set Y is a subset (Not a proper subset) of set X as all the elements of set Y is in set X. Hence, we can write $Y \subseteq X$.

$$\checkmark X \subseteq Y \quad X \leqslant Y \checkmark$$

$$\forall x (x \in A \rightarrow x \in B)$$

4

Types of Set

X ⊂ Y

Proper Subset

The term “proper subset” can be defined as “subset of but not equal to”.

A Set X is a proper subset of set Y (Written as $X \subset Y$) if every element of X is an element of set Y and $|X| < |Y|$.

Example – Let, $X = \{1, 2, 3, 4, 5, 6\}$ and $Y = \{1, 2\}$. Here set $Y \subset X$ since all elements in Y are contained in X too and X has at least one element is more than set Y.

5

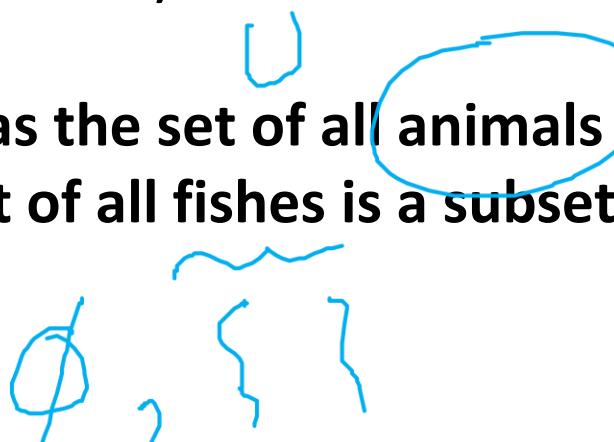
$$\forall x(x \in A \rightarrow x \in B) \wedge \exists x(x \in B \wedge x \notin A)$$

Universal Set

It is a collection of all elements in a particular context or application. All the sets in that context or application are essentially subsets of this universal set. Universal sets are represented as U.

Example – We may define U as the set of all animals on earth. In this case, set of all mammals is a subset of U, set of all fishes is a subset of U, set of all insects is a subset of U, and so on.

6



Empty Set or Null Set

An empty set contains no elements. It is denoted by \emptyset . As the number of elements in an empty set is finite, empty set is a finite set. The cardinality of empty set or null set is zero.

Example – $S = \{x \mid x \in \mathbb{N} \text{ and } 7 < x < 8\} = \emptyset$

1

Types of Set

Singleton Set or Unit Set

Singleton set or unit set contains only one element.

A singleton set is denoted by $\{s\}$.

Example – $S = \{x \mid x \in \mathbb{N}, 7 < x < 9\} = \{8\}$

Equivalent Set

If the cardinalities of two sets are same, they are called equivalent sets.

Example – If $A = \{1, 2, 6\}$ and $B = \{16, 17, 22\}$,

they are equivalent as cardinality of A is equal to the cardinality of B. i.e.

$$|A| = |B| = 3$$

9

Equal Set

If two sets contain the same elements they are said to be equal.

Example – If $A = \{1, 2, 6\}$ and $B = \{6, 1, 2\}$, they are equal as every element of set A is an element of set B and every element of set B is an element of set A.

$$\forall x (x \in A \leftrightarrow x \in B)$$

Another look at Equality of Sets

equal

- Recall that two sets A and B are *equal*, denoted by $A = B$, iff $\forall x(x \in A \leftrightarrow x \in B)$

- Using logical equivalences we have that $A = B$ iff

$$\forall x[(x \in A \rightarrow x \in B) \wedge (x \in B \rightarrow x \in A)]$$

- This is equivalent to

$$A \subseteq B \quad \text{and} \quad B \subseteq A \Rightarrow A = B$$

Types of Set

10

Overlapping Set

Two sets that have at least one common element are called overlapping sets.

Example – Let, $A=\{1,2,6\}$ and $B=\{6,12,42\}$.

There is a common element '6', hence these sets are overlapping sets.

11

Disjoint Set

Two sets A and B are called disjoint sets if they do not have even one element in common. Therefore, disjoint sets have the following properties –

$$n(A \cap B) = \emptyset$$

$$n(A \cup B) = n(A) + n(B)$$

Example – Let, $A=\{1,2,6\}$ and $B=\{7,9,14\}$, there is not a single common element, hence these sets are disjoint sets.

12

What is the **power set** of the set $\{0, 1, 2\}$?

$$2 \Rightarrow 2^3 = 8$$

Solution: The power set $(\{0, 1, 2\})$ is the set of all subsets of $\{0, 1, 2\}$.

Hence, Examples $(\{0, 1, 2\}) = \{\emptyset, \{0\}, \{1\}, \{2\}, \{0, 1\}, \{0, 2\}, \{1, 2\}, \{0, 1, 2\}\}$.

Note that the empty set and the set itself are members of this set of subsets

* **Cartesian product of $A = \{1, 2\}$ and $B = \{a, b, c\}$?**

Solution: The Cartesian product $A \times B$ is;

$$A \times B = \{(1, a), (1, b), (1, c), (2, a), (2, b), (2, c)\}.$$

$$A \times B = \{(a, b) | a \in A \wedge b \in B\}$$

8
Tuples
 (a_1, a_2)
 (a_1, a_3)
 (a_2, a_3)

The **cardinality** of a finite set A , denoted by $|A|$, is the number of (distinct) elements of A .

Examples: 1. $|\emptyset| = 0$ ✓

$$\emptyset \Rightarrow 0$$

2. Let S be the letters of the English alphabet. Then $|S| = 26$

3. $|\{1, 2, 3\}| = 3$ ✓

$$\{1, 2, 3\} = 3$$

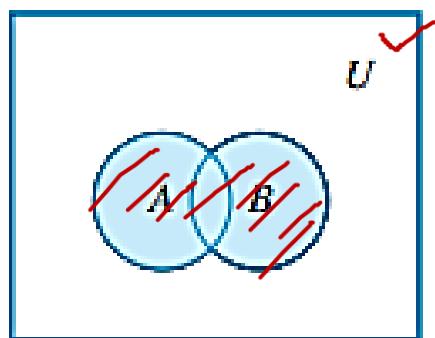
4. $|\{\emptyset\}| = 1$

5. The set of integers is infinite.

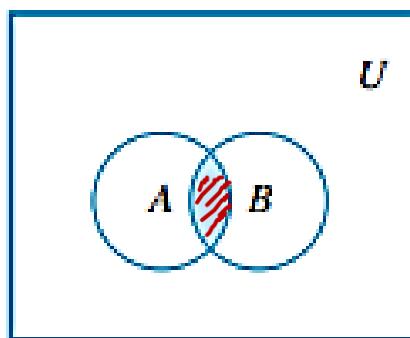
Set Operation

Venn Diagrams

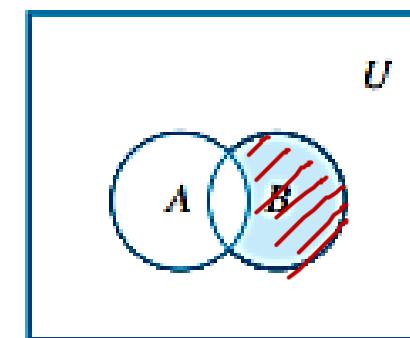
If sets A and B are represented as regions in the plane, relationships between A and B can be represented by pictures, called Venn diagrams, that were introduced by the British mathematician John Venn in 1881. ✓



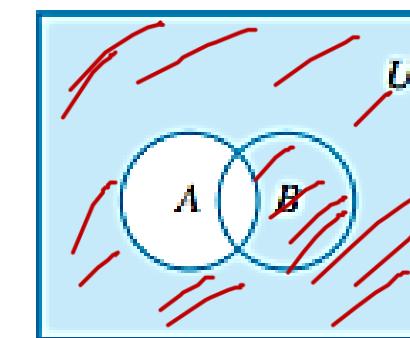
Shaded region
represents $A \cup B$. ✓



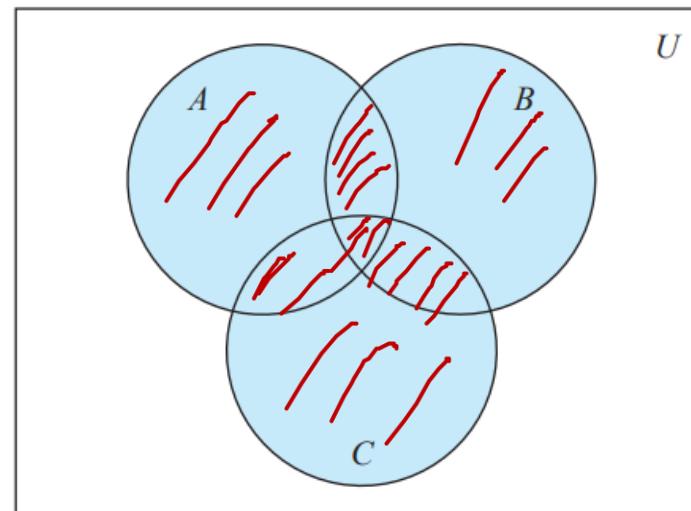
Shaded region
represents $A \cap B$.



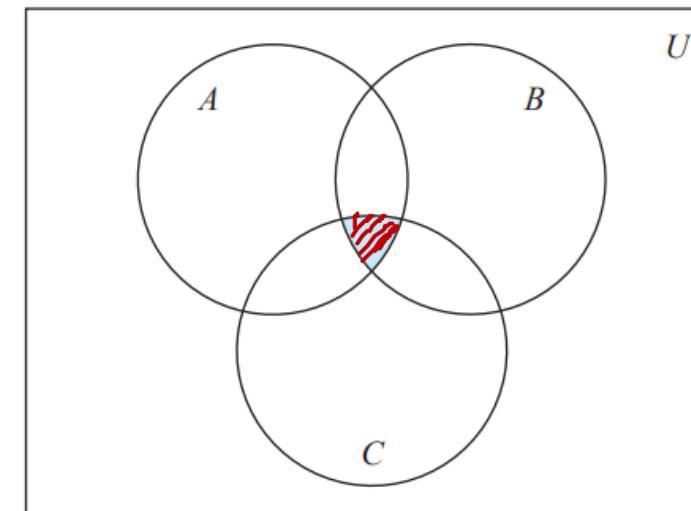
Shaded region
represents $B - A$.



Shaded region
represents A^c .



(a) $A \cup B \cup C$ is shaded.



(b) $A \cap B \cap C$ is shaded.

Set Operation

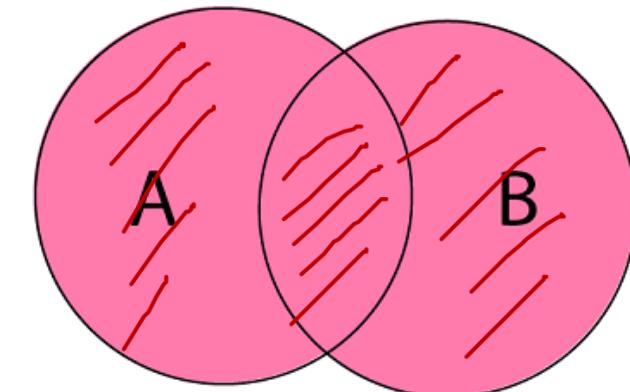
1 Union of Sets: Union of Sets A and B is defined to be the set of all those elements which belong to A or B or both and is denoted by $A \cup B$.

$$A \cup B = \{x : x \in A \text{ or } x \in B\}$$

Example: Let $A = \{1, 2, 3\}$, $B = \{3, 4, 5, 6\}$

$$A \cup B = \{1, 2, 3, 4, 5, 6\}.$$

$$A \cup B = \{x \mid x \in A \vee x \in B\}.$$



$$|A \cup B| = |A| + |B| - |A \cap B|$$

Principle of inclusion-exclusion.

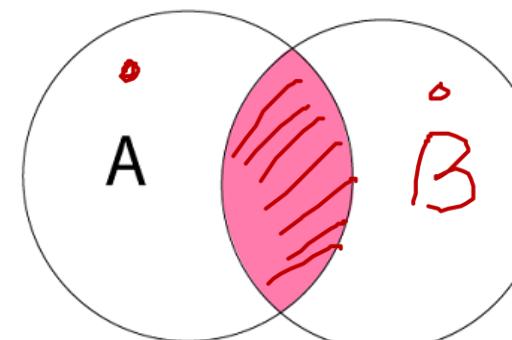
2 Intersection of Sets: Intersection of two sets A and B is the set of all those elements which belong to both A and B and is denoted by $A \cap B$.

$$A \cap B = \{x : x \in A \text{ and } x \in B\}$$

Example: Let $A = \{11, 12, 13\}$, $B = \{13, 14, 15\}$

$$A \cap B = \{13\}$$

$$A \cap B = \{x \mid x \in A \wedge x \in B\}.$$



3 Difference of Sets:

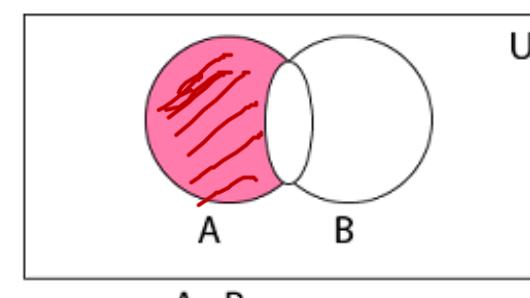
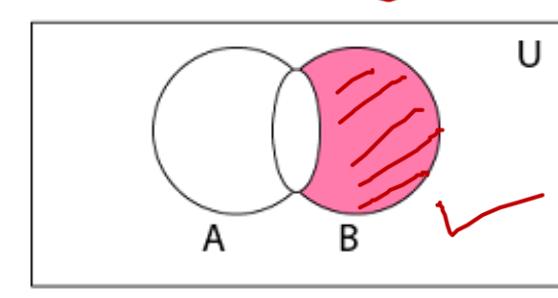
The difference of two sets A and B is a set of all those elements which belongs to A but do not belong to B and is denoted by $A - B$.

$$A - B = \{x : x \in A \text{ and } x \notin B\}$$

Example: Let $A = \{1, 2, 3, 4\}$ and $B = \{3, 4, 5, 6\}$

$$\text{then } A - B = \{1, 2\} \text{ and } B - A = \{5, 6\}$$

$$A - B = \{x \mid x \in A \wedge x \notin B\}.$$



$$A - B = A \cap \bar{B}.$$

4

Set Operation

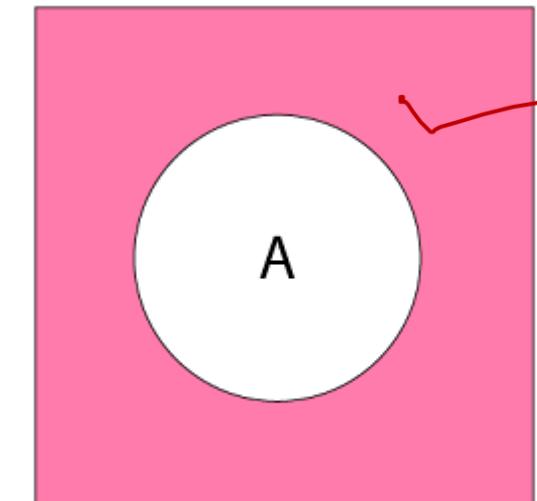
Complement of a Set: The Complement of a Set A is a set of all those elements of the universal set which do not belong to A and is denoted by A^c .

$$A^c = U - A = \{x: x \in U \text{ and } x \notin A\} = \{x: x \notin A\}$$

Example: Let U is the set of all natural numbers.

$$A = \{1, 2, 3\}$$

$A^c = \{\text{all natural numbers except } 1, 2, \text{ and } 3\}$.



5

$$\bar{A} = \{x \in U \mid x \notin A\}.$$

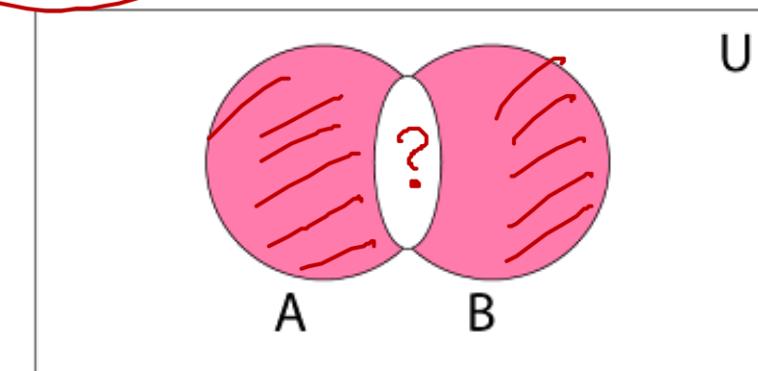
Symmetric Difference of Sets: The symmetric difference of two sets A and B is the set containing all the elements that are in A or B but not in both and is denoted by $A \oplus B$ i.e.

$$A \oplus B = (A \cup B) - (A \cap B)$$

Example: Let $A = \{a, b, c, d\}$

$$B = \{a, b, l, m\}$$

$$A \oplus B = \{c, d, l, m\}$$



$$A \Delta B = (A - B) \cup (B - A).$$