
Advanced Micro-Architecture 

Introduction 

In modern computer architecture, improving processor performance is one of the most important 

design objectives. As software applications continue to grow in size and complexity, processors 

are required to execute a very large number of instructions efficiently and at high speed. Simply 

increasing hardware resources such as adding more transistors or increasing memory size is no 

longer sufficient. Instead, computer architects rely on advanced micro-architectural techniques to 

improve performance. Among these techniques, pipelining, deep pipelining, and branch 

prediction play a central role. These concepts are strongly interconnected. Pipelining improves 

instruction throughput, deep pipelining increases clock frequency, and branch prediction is 

essential to manage the control hazards introduced by deep pipelines. This document explains 

these concepts in a detailed and continuous manner so that students can understand both the 

theory and the practical motivation behind them. 

Instruction Pipelining 

Instruction pipelining is an implementation technique that allows multiple instructions to be 

overlapped during execution. Instead of completing one instruction fully before starting the next, 

pipelining divides the execution of instructions into a series of stages, with each stage 

performing a specific part of the instruction cycle. This concept is often compared to an 

assembly line in a factory. In an assembly line, the construction of a product is divided into 

multiple stages, and each stage performs one specific task. As a result, many products can be in 

different stages of production at the same time. Similarly, in a pipelined processor, many 

instructions are processed simultaneously, each at a different stage of execution. 

In most classical RISC-based processors, the instruction execution cycle is divided into five main 

stages. The first stage is Instruction Fetch (IF), where the processor fetches the instruction from 

instruction memory using the Program Counter, which holds the address of the next instruction. 

The second stage is Instruction Decode (ID), where the fetched instruction is decoded and the 

required registers are read from the register file. The third stage is Instruction Execute (EX), 

where arithmetic or logical operations are performed, or where branch conditions and memory 

addresses are calculated. The fourth stage is Memory Access (MEM), where data memory is 

accessed if the instruction is a load or store operation. Finally, the Write Back (WB) stage writes 

the result of the instruction back into the destination register. 

These stages can be represented as: 

IF → ID → EX → MEM → WB 

In a pipelined processor, these stages operate in parallel on different instructions. While one 

instruction is being executed in the EX-stage, another instruction may be in the ID stage, and a 

third instruction may be in the IF stage. This overlapping of execution increases throughput, 

which means that the processor can complete more instructions per unit time. 

Performance of Pipelining  



The main objective of pipelining is to improve throughput rather than reducing the latency of a 

single instruction. Latency refers to the time taken by one instruction to complete from start to 

finish, whereas throughput refers to the number of instructions completed per unit time. 

Ideally, if an instruction execution process is divided into k pipeline stages, the time per 

instruction in a pipelined processor can be approximated as the time of a non-pipelined processor 

divided by k. This means that, in ideal conditions, pipelining can provide a speedup proportional 

to the number of stages. 

The speedup achieved by pipelining can be expressed as the ratio of execution time without 

pipelining to the execution time with pipelining. As the number of instructions executed becomes 

very large, the speedup approaches the number of pipeline stages. However, in practical systems, 

hazards and pipeline overheads reduce the actual speedup. 

Pipeline Hazards 

Pipeline hazards are situations that prevent the next instruction in the pipeline from executing 

during its designated clock cycle. These hazards reduce the ideal performance of a pipelined 

processor. 

Structural hazards occur when the hardware cannot support multiple instructions at the same 

time. For example, if the processor has a single memory unit that is shared by both instruction 

fetch and data access, a conflict may occur when both stages need memory access 

simultaneously. 

Data hazards occur when an instruction depends on the result of a previous instruction that has 

not yet completed its execution. A common example is a Read-After-Write dependency, where 

an instruction tries to read a register before the previous instruction has written the correct value 

into it. These hazards are typically handled using techniques such as forwarding (also known as 

bypassing) or stalling the pipeline. 

Control hazards are caused by branch instructions. When a branch instruction is encountered, the 

processor does not immediately know which instruction should be fetched next. This uncertainty 

disrupts the normal flow of the pipeline and becomes a major problem in deeper pipelines. 

Deep Pipelining (Super-pipelining) 

Deep pipelining, also known as super-pipelining, is an advanced form of pipelining in which the 

number of pipeline stages is significantly increased. Instead of using a simple five-stage pipeline, 

deep pipelined processors may use ten, fifteen, twenty, or even more stages. A well-known 

example is the Intel Pentium 4 processor, which used a very deep pipeline to achieve high clock 

frequencies. 

In deep pipelining, the original pipeline stages such as IF, ID, EX, MEM, and WB are further 

subdivided into smaller sub-stages. For example, the instruction fetch stage may be divided into 

IF1 and IF2, instruction decode into ID1 and ID2, and execution into EX1 and EX2. A 

conceptual representation of a deep pipeline can be shown as: 

IF1 → IF2 → ID1 → ID2 → EX1 → EX2 → MEM1 → MEM2 → WB1 → WB2 



The main motivation behind deep pipelining is to reduce the amount of work performed in each 

stage. When each stage performs a smaller amount of work, the delay of that stage is reduced. 

Since the clock cycle time is determined by the slowest stage in the pipeline, reducing the stage 

delay allows the processor to operate at a much higher clock frequency. As a result, more 

instructions can be processed per second, increasing throughput. 

Trade-offs and Problems of Deep Pipelining 

Although deep pipelining allows processors to achieve very high clock speeds, it introduces 

significant trade-offs. One major drawback is increased instruction latency. Because an 

instruction must pass through a larger number of stages, the total time taken for a single 

instruction to complete increases. 

Another serious issue is the increased penalty caused by hazards. In deep pipelines, many more 

instructions are in flight at the same time. If a stall or hazard occurs, a larger number of 

instructions are affected. This problem is especially severe in the case of control hazards. 

Branch misprediction becomes extremely costly in deep pipelines. If a branch is predicted 

incorrectly in a pipeline with twenty or thirty stages, the processor may need to flush all these 

stages. This means that many partially executed instructions are discarded, wasting a large 

number of clock cycles. This wasted time is known as the branch misprediction penalty, and it 

increases as the pipeline depth increases. 

Branch Prediction and Its Importance 

Branch prediction is a technique used to reduce the performance loss caused by control hazards. 

Instead of waiting for the branch decision to be resolved, the processor predicts whether the 

branch will be taken or not taken and continues fetching instructions accordingly. If the 

prediction is correct, the pipeline continues smoothly without interruption. If the prediction is 

incorrect, the incorrectly fetched instructions are flushed, and execution resumes from the correct 

path. 

In deep pipelined processors, branch prediction is not optional; it is essential. Without branch 

prediction, the processor would have to stall the pipeline frequently, resulting in poor 

performance. Accurate branch prediction allows deep pipelines to operate efficiently by 

minimizing stalls and reducing the impact of control hazards. 

Control Hazards and the Branch Problem 

A control hazard occurs when the processor encounters a branch instruction that can change the 

normal sequential flow of execution. Branch instructions are very common in programs and 

appear in conditional statements, loops, and function calls. When a branch instruction is fetched 

into the pipeline, the processor does not immediately know which instruction should be executed 

next because the branch decision depends on the result of a comparison that is resolved later in 

the pipeline. 

In a shallow pipeline, the branch decision is resolved relatively quickly, and only a small number 

of instructions may need to be discarded if the wrong path is taken. In a deep pipeline, however, 

the branch decision may be resolved much later, after many pipeline stages. During this time, the 



processor continues fetching and partially executing instructions based on an assumed path. If 

this assumption turns out to be incorrect, all these instructions must be flushed from the pipeline. 

This flushing process wastes many clock cycles and significantly reduces performance. The 

number of wasted cycles due to a wrong branch decision is known as the branch penalty, and it 

increases as the pipeline becomes deeper. 

Branch Prediction 

Branch prediction is a technique designed to reduce the performance loss caused by control 

hazards in pipelined processors, especially those with deep pipelines. Instead of waiting for the 

branch instruction to be fully resolved, the processor predicts the outcome of the branch in 

advance. Based on this prediction, the processor continues fetching and executing instructions 

from the predicted path. If the prediction is correct, the pipeline continues smoothly without 

interruption. If the prediction is incorrect, the processor must discard the incorrectly executed 

instructions and restart execution from the correct path. 

The primary goal of branch prediction is to keep the pipeline full and busy. In deep pipelines, 

stalling the pipeline until the branch decision is known would result in a large number of idle 

cycles, severely reducing performance. By predicting branch outcomes, the processor avoids 

unnecessary stalls and maintains high instruction throughput. 

Static Branch Prediction 

Static branch prediction techniques make predictions without using runtime information. The 

prediction strategy is fixed and does not change during program execution. One simple static 

approach is to always predict that a branch will not be taken, allowing the processor to continue 

executing the next sequential instruction. Another approach is to always predict that the branch 

will be taken. Some static methods use simple rules, such as predicting backward branches as 

taken because they are commonly associated with loops. 

Static branch prediction has the advantage of being simple and requiring minimal hardware. 

However, its accuracy is limited because it does not adapt to the actual behavior of programs 

during execution. In deep pipelines, low prediction accuracy leads to frequent pipeline flushes 

and high performance penalties, making static prediction insufficient for modern high-

performance processors. 

Dynamic Branch Prediction 

Dynamic branch prediction techniques use runtime information to make more accurate 

predictions. The processor monitors the actual outcomes of branch instructions and uses this 

history to predict future behavior. Over time, the predictor learns the patterns of branch behavior 

and improves its accuracy. 

One common dynamic approach is the use of history-based predictors, such as one-bit and two-

bit predictors. These predictors store information about whether a branch was taken or not taken 

in the past and use this information to make future predictions. More advanced dynamic 

predictors combine local and global branch histories to further improve accuracy. 



Dynamic branch prediction significantly reduces the number of mispredictions in deep pipelines. 

Although it requires additional hardware and increases design complexity, the performance 

benefits far outweigh the costs, especially in processors with high clock speeds and deep 

pipelines. 

Branch Misprediction and Penalty 

To understand the cost of branch misprediction mathematically, it is useful to relate it to pipeline 

depth. When a branch is mis-predicted, all instructions that entered the pipeline after the branch 

must be flushed. 

If the pipeline has N stages and the branch decision is resolved at stage k, then the approximate 

branch penalty can be expressed as: 

Branch Penalty ≈ N − k cycles 

In deep pipelines, N is large, which means the branch penalty is also large. This is why deep 

pipelines are highly sensitive to branch prediction accuracy. 

Another important performance metric is Cycles Per Instruction (CPI). In an ideal pipelined 

processor, the CPI is close to 1. However, branch mispredictions increase CPI. 

The effective CPI can be expressed as: 

CPI = Ideal CPI + (Branch Frequency × Misprediction Rate × Branch Penalty) 

This equation clearly shows that as pipeline depth increases, branch penalty increases, which in 

turn increases CPI if mispredictions occur. Therefore, accurate branch prediction is essential to 

maintain low CPI in deep pipelined processors. 

A branch misprediction occurs when the predicted outcome of a branch does not match the 

actual outcome. When this happens, all instructions that were fetched and partially executed 

based on the incorrect prediction must be removed from the pipeline. The processor then fetches 

the correct instruction stream and resumes execution. 

In deep pipelines, the penalty for a misprediction is very high because a large number of stages 

must be flushed. This makes accurate branch prediction essential. As pipeline depth increases, 

even a small reduction in prediction accuracy can lead to a significant drop in performance. 

Therefore, modern processors invest heavily in sophisticated branch prediction mechanisms to 

minimize misprediction penalties. 

Relationship Between Deep Pipelines and Branch Prediction 

Deep pipelining and branch prediction are tightly interconnected. Deep pipelines enable higher 

clock frequencies and improved throughput, but they also increase the severity of control hazards 

and branch penalties. Branch prediction addresses this problem by allowing the processor to 

make educated guesses about control flow and continue execution without waiting for branch 

resolution. 



Without effective branch prediction, deep pipelines would spend a large amount of time stalled 

or flushing instructions, making them inefficient. As a result, branch prediction is not an optional 

feature but a fundamental requirement for the successful implementation of deep pipelined 

architectures. 

Superscalar Processors 

A superscalar processor is a processor that can issue and execute more than one instruction in a 

single clock cycle. In a traditional pipelined processor, even though multiple pipeline stages 

operate in parallel, only one instruction is issued per cycle. Superscalar processors remove this 

limitation by providing multiple execution units, such as multiple arithmetic logic units, 

load/store units, and floating-point units. The processor examines a group of instructions 

simultaneously and determines which instructions are independent of each other. Independent 

instructions are then dispatched to different execution units in the same clock cycle. 

From a performance perspective, the main objective of a superscalar processor is to increase the 

number of instructions completed per cycle, often referred to as Instructions Per Cycle (IPC). By 

executing multiple instructions in parallel, the processor significantly improves throughput. 

However, this parallelism is limited by data dependencies, control dependencies, and hardware 

resource availability. Therefore, superscalar processors require complex hardware logic for 

instruction decoding, dependency checking, and scheduling. In examinations, students should 

clearly mention that superscalar execution exploits instruction-level parallelism (ILP). 

Out-of-Order Execution 

Out-of-order execution is a technique used to reduce pipeline stalls caused by data dependencies 

and long-latency operations. In an in-order processor, instructions are executed strictly in the 

order in which they appear in the program. If an instruction depends on the result of a previous 

instruction that has not yet completed, the entire pipeline must stall. Out-of-order processors 

avoid this inefficiency by allowing instructions that are ready for execution to proceed ahead of 

stalled instructions, even if they appear later in the program. 

Although instructions may execute out of program order, the processor ensures that the final 

results are committed in the original program order. This guarantees correct program behavior 

and precise exceptions. Out-of-order execution improves overall performance by keeping 

execution units busy and minimizing idle cycles. From an exam point of view, it is important to 

emphasize that out-of-order execution improves utilization of hardware resources and works 

hand-in-hand with superscalar architectures. 

Register Renaming 

Register renaming is a key technique that enables efficient out-of-order execution. In programs, 

instructions use a limited set of architectural registers defined by the instruction set architecture. 

This limitation can create false dependencies between instructions, such as write-after-read 

(WAR) and write-after-write (WAW) hazards, even when there is no true data dependency. 

These false dependencies unnecessarily restrict instruction reordering. 

Register renaming solves this problem by mapping architectural registers to a larger pool of 

physical registers inside the processor. Each time an instruction writes to a register, it is assigned 

a new physical register. As a result, multiple instructions that use the same architectural register 



name can execute in parallel without interference. In examinations, students should mention that 

register renaming eliminates false dependencies and is essential for high-performance 

superscalar and out-of-order processors. 

Single Instruction Multiple Data (SIMD) 

Single Instruction Multiple Data, or SIMD, is a form of parallel processing where a single 

instruction operates on multiple data elements simultaneously. SIMD exploits data-level 

parallelism, which occurs when the same operation must be applied to a large set of similar data 

values. Instead of executing the same instruction repeatedly for each data element, SIMD allows 

the processor to process multiple elements in one operation. 

SIMD is widely used in applications such as image processing, video encoding, scientific 

simulations, and machine learning. Modern processors include vector registers and specialized 

SIMD instruction sets, such as SSE and AVX in Intel architectures. From an exam perspective, it 

is important to note that SIMD improves performance and energy efficiency but is most effective 

when the program has regular, data-parallel workloads. 

Multithreading 

Multithreading is a technique that allows a single processor core to execute multiple threads of 

execution. A thread represents an independent sequence of instructions within a program. In 

many situations, a thread may stall due to cache misses, memory access delays, or branch 

mispredictions. During these stalls, processor resources may remain idle. 

Multithreading improves processor utilization by allowing another thread to execute while one 

thread is waiting. There are different forms of multithreading, including coarse-grained, fine-

grained, and simultaneous multithreading. Simultaneous multithreading allows instructions from 

multiple threads to be issued in the same clock cycle. Intel’s Hyper-Threading technology is a 

well-known example. In exams, students should emphasize that multithreading improves 

throughput and hides latency. 

Homogeneous Multiprocessing 

Homogeneous multiprocessing refers to a system that contains multiple processors or cores that 

are identical in terms of architecture, instruction set, and performance characteristics. All 

processors share the same memory and are capable of executing the same types of tasks. This is 

the most common form of multiprocessing found in modern multi-core CPUs. 

In homogeneous multiprocessing systems, the operating system distributes processes and threads 

among the available processors to balance the workload and improve performance. Because all 

processors are identical, task scheduling and load balancing are simpler compared to 

heterogeneous systems. From an examination point of view, students should clearly state that 

homogeneous multiprocessing improves performance through parallel execution while 

maintaining programming simplicity. 

 

 


