[bookmark: _9up6srjr6qdg] Pipelined Architecture
[bookmark: _p35r9s4cv5sf]🔹 What is Pipelining? (Very Simple)
Pipelining is a technique used in CPU (processor) to do multiple tasks at the same time, just like multitasking, but in an organized way.
👉 Instead of finishing one instruction completely and then starting the next, the CPU breaks instructions into steps and works on many instructions together.
[bookmark: _dczg12pmd5uc]🏭 Real-Life Example: Factory Assembly Line
Imagine a car factory 🚗
	Worker
	Job

	Worker 1
	Install engine

	Worker 2
	Add wheels

	Worker 3
	Paint car

	Worker 4
	Final check

· One car moves step by step
· At the same time:
· Car 1 is being painted
· Car 2 is getting wheels
· Car 3 is getting engine
✔️ Many cars are processed at the same time, but at different stages
👉 This is exactly how pipelining works in CPU
[bookmark: _a4x1jhyflhp9]🧠 Pipelined Processor (CPU Example)
A pipeline processor divides work into stages.
Each instruction passes through these stages:
1. Fetch – get instruction
2. Decode – understand instruction
3. Execute – do the calculation
4. Memory – read/write memory
5. Write Back – save result
[bookmark: _g6x4ux501hd7]📊 Basic Pipeline Diagram (Easy ASCII Diagram)
Data In
 |
 v
+----+ +----+ +----+ +----+ +----+
| S1 |-->| S2 |-->| S3 |-->| S4 |-->| S5 |
|Fetch|Decode|Exec |Mem |Write|
+----+ +----+ +----+ +----+ +----+
 | | | | |
 R1 R2 R3 R4 R5
 | | | | |
Data Out

[bookmark: _xjfd704xsizz]🔧 Diagram Components (In Simple Words)
[bookmark: _22fi0hrgu7l]1️⃣ Data In
· Instructions coming into CPU
 👉 Example: ADD A, B

[bookmark: _rggvcxbamyke]2️⃣ Stages (S1, S2, S3…)
· Each stage does one small job
· Like workers in a factory
[bookmark: _6wlrt2txgxmj]3️⃣ Registers (R1, R2...)
· Temporary storage
· Hold data between stages
 👉 Like waiting table between workers

[bookmark: _7rotmabisb3b]4️⃣ Computation Units (C1, C2...)
· Do actual work (addition, subtraction, logic)
[bookmark: _g55gxkmc9u1p]5️⃣ Control Unit
· Boss of CPU 🧠
· Tells when and what each stage should do
[bookmark: _c1ojq1szqyey]6️⃣ Data Out
· Final result
 👉 Example: Result of ADD A, B

[bookmark: _oxjuhgoq9ecr]⏱️ How Pipelining Works (Step by Step)
[bookmark: _y87q3eckm1t3]Clock Cycle Example
	Clock
	S1
	S2
	S3

	1
	A
	-
	-

	2
	B
	A
	-

	3
	C
	B
	A

	4
	D
	C
	B

👉 After pipeline is full:
· One result comes every clock cycle
· Very fast 🚀
[bookmark: _frrup9qa7hv7]🧾 Instruction Execution Example
[bookmark: _6dq3m427x1yl]Instruction Steps:
· FI – Fetch Instruction
· DA – Decode Instruction
· FO – Fetch Operands
· EX – Execute
[bookmark: _acmnkapye0m1]Example:
Instruction 1 → Fetch
Instruction 2 → Fetch
Instruction 1 → Decode
Instruction 3 → Fetch
Instruction 2 → Decode
Instruction 1 → Execute

✔️ Multiple instructions run together
 ✔️ This is called Instruction Level Parallelism
[bookmark: _2j0a8ebyqtzr]⚠️ What are Pipeline Hazards?
Sometimes pipeline cannot work smoothly.
These problems are called Hazards.
[bookmark: _ncdkg1h8p8ob]🚧 1. Structural Hazard (Resource Clash)
[bookmark: _u8ywbn2ydmhh]Real-Life Example:
· Two people want to use one bathroom 🚻 at same time
[bookmark: _rdks6jsxjsf3]CPU Example:
· Two instructions want to use same ALU or memory
· CPU must wait → slow down
[bookmark: _yy5ys5td3v00]🔁 2. Data Hazard (Dependency Problem)
[bookmark: _dntjdzfl7yat]Real-Life Example:
· You ask result before calculation is done ❌

[bookmark: _3knp669zxye8]CPU Example:
Instruction 1: A = B + C
Instruction 2: D = A + 5

👉 Instruction 2 needs A
 👉 But Instruction 1 is not finished yet
 ➡️ CPU must wait
[bookmark: _qrt0os19hvdv]Types of Data Dependency (Easy Meaning)
	Type
	Meaning

	RAW
	Read after Write (most common)

	WAR
	Write after Read

	WAW
	Write after Write

	RAR
	Read after Read (safe)

[bookmark: _lkh9q7u81txx]🔀 3. Control Hazard (Decision Problem)
[bookmark: _xk195qj98jzy]Real-Life Example:
· You turn left/right but decision not made yet 🤔

[bookmark: _e52lut8z5e2a]CPU Example:
IF (x > 0) GOTO L1

· CPU doesn’t know which instruction is next
· Wrong instruction may enter pipeline
· Pipeline may stall or flush

[bookmark: _mea5xix651or]📈 Performance Factors (Simple)
[bookmark: _837ivtdvamgb]🕒 Latency
· Time to finish one instruction
· Less latency = better
[bookmark: _bauo0mx0c0s2]⚙️ Efficiency
· How busy pipeline is
· More busy = more efficient
[bookmark: _esi5naxhbluy]🚀 Throughput
· Instructions completed per second
· Main advantage of pipelining
[bookmark: _ks2gm4o3rrps]✅ Benefits of Pipelining
✔️ Faster execution
 ✔️ More instructions per second
 ✔️ Better use of CPU parts
 ✔️ Ideal for repeated tasks
[bookmark: _c4hq2qu7gkhn]❌ Disadvantages of Pipelining
❌ Complex design
 ❌ Branch instructions cause problems
 ❌ Hazards reduce performance
 ❌ Hard to predict exact speed
[bookmark: _eoz1e2rgfxt9]🧠 Final One-Line Summary
Pipelining is like a factory assembly line where many instructions are processed at the same time, each at a different stage, to make the CPU faster and more efficient.

