Introduction to Processor
Architecture

A simple computer

CPU
Instruction
decoder Memory
Registers Address >
o .
g .
(=4 / N\ g
o
— Data 2
1

A simple computer

* The example computer has a Central Processing Unit (CPU), memory
(RAM) and 2 busses (Address and Data) that connect them

* The CPU has a set of registers (usually < 100 but may be as few as 4),
that are often used to store local operands/variables/intermediate
results

* The Arithmetic Logic Unit (ALU) performs computations

* The CPU fetches instructions from the memory where the Instruction
Decoder in conjunction with the Control Unit are used to control the
elements within the CPU to execute the instructions

A simple computer

* A computer architecture is defined by its instruction set and architectural
state

* For example, for a ‘MIPS’ processor the architectural state comprises the
program counter (PC) and the 32 registers

* So, based on its current architectural state, the processor executes a
particular instruction with a particular set of data to yield a new
architectural state

* The microarchitecture is the specific arrangement of registers, ALUs, finite
state machines (FSMs), memories and other logic building blocks (e.g.,
multiplexers) needed to implement an architecture

* Note that a particular architecture can be implemented by many different
microarchitectures, each having different performance, complexity and
cost trade-offs

Microarchitecture

e A microarchitecture can usually be divided in to 2 interacting parts:

— Datapath: Operates on words of data, e.g., 16-bit, 32-bit, and contains
structures such as memories, , registers, ALUs and multiplexers. Note that
the program counter can be viewed as a conventional register whose
output points to the current instruction and its input indicates the address
of the next instruction.

— Instruction Decoder/Control Unit: receives the current instruction from the
- and tells the data-path how to execute that instruction, i.e., the control
unit issues multiplexer select, register enable and memory write signals to
control the operation of the data-path.

Building a simple computer

* We will now look the design of a single-cycle processor, i.e., it
executes its instructions in a single clock cycle

* We gradually develop the data-path by adding new components to
the state elements. In doing so, we gradually increase the capability
of the computer

* The instruction decoder/control unit generates the control signals
(using combinational logic) that control the data-path so that the
required instructions can be executed

* We will assume that the computer is based on word addressable
memory, e.g., 32-bit words at each memory location (address)

Building a simple computer —fetching instructions

Program
Counter
(PC)
Addr. Instr.
» Memory ————»
iBi
Adder

* Address supplied from PC to
memory yields instruction to be
executed

* Thisinstruction is presented to the
rest of the data path

* PCis then incremented by one
(utilising the Adder) to point to the
next instruction in the memory

* Can’t write very interesting
programs!

* No branching
* No access to data in memory

Building a simple computer —branching enable

Program
Counter
(PC)

Mux

j Addr.

Y

Memory

Instr.
——»

e

Adder

* Including Mux enables PC to be
changed to an arbitrary value to
permit branching — detail to follow

* We will now introduce more of the
data-path
* Instruction decoder/control unit
* Registers (actually register file)
and ALU

* We will return to branching later!

Building a simple computer —register access

Example machine instruction format

Program function
Counter
) 010 op | rd | rsl | rs2
= »rsl
Mux a
Addr. Instr.| 5 |g11 op — operation code
™| Memory 5 (ool 1 - ALU source register
8 OOE— rd ALU rs g
&) rs2 — ALU source register
’_.Register rd — ALU destination register
File
ADD R1, R2, R3 ;regl=reg2 +reg3
1 010 001010011
Adder

rslis specified as R2, rs2 is specified as R3,
rd is specified as R1 and ALU function - ADD

Building a simple computer —memory access

Program function
Counter
(PC)
| XXX
- N »{rsl
Addr.__ Instr. Instr.| = 019‘ 2 Data
"| Memory Ec‘ 001 Memory

3 | rd ALU
o

—
Register
File
1] result from memory or ALU?

Adder

LOADR1, [R2] ;regl=mem[reg2]

Building a simple computer — memory access

* Addition of Mux permits result to be stored in the Register File (at
destination rd specified as R1 (regl)) to come from ALU or from Data
Memory

* Data memory address specified by ALU output

* ALU input/output is content of source register rs2 specified as R2 (reg2)

* So Data Memory output is the content of the location pointed to by R2
(reg2)

* Thatis | LOADR1, [R2] ;regl=mem]reg2]

* Note source register rsl is not required in this operation and so does not
need to be specified

Building a simple computer - branching

result was zero?

P
— function
branch?
Register
(PC) File
) XXX

rsl

Addr, Instr. Instr,

Memory

Data
Memory

rs2

AP0 "Isuf

rd

Mux

BEQZR1, +10; if (R1=0) PC=PC+10

Building a simple computer - branching

* ALU input/output is the contents of source register rs2 specified as R1
(regl)

* ALU also has a flag output indicating if the ALU output is zero

* If a branch instruction is decoded (by the Instruction
decoder/controller) and the ALU zero flag is set, then the AND gate

output (which is the branch Mux control input) will become ‘1’ and
the input to the PC will now come from the output of the newly

introduced ‘jump’ adder
* The jump adder takes the current PC value and adds to it the required
‘jump’ value (supplied by the Instruction decoder)

Building a simple computer - branching

* For example, for the branch if equal to zero instruction

BEQZR1, +10; if (reg1=0) PC=PC+10

* When executed a jump of 10 instructions will occur (i.e., 10 is added to
the PC) if the contents of register specified as R1 (regl) is equal to zero

Multicycle processor

* Asingle cycle processor has 3 main weaknesses:
* Clock cycle needs to be long enough to cope with slowest instruction
* Needs 3 adders—1in ALU and 2 in the PC logic
* Separate instruction and data memory

* In a multicycle processor:
* Instructions are broken into multiple shorter (i.e., faster) steps

* More complex instructions take more steps than simple ones, so simple
instructions execute faster than complex ones

* Need only one adder since this can be reused for different tasks in different steps

* Only one memory is required since instruction is fetched in 1% step and data may
be read or written in later steps

Multicycle processor

Short Medium Long
Inst. Inst. Inst.

Single Cycle processor

Long Short Medium Short
Inst. Inst. Inst. Inst.

Min clock period
single cycle

Multicycle processor

Long Short Medium Short
Inst. Inst. Inst. Inst.
«—

Min clock period
multicycle

Multicycle processor

* Design is more complex:
* Need to add non-architectural state elements (i.e., registers) to hold intermediate
results
* The controller is now a FSM rather than combinational logic since it has to
produce different outputs on different steps

* Advantages:
* ALU can now be reused several times
* Instructions and data can be stored in one shared memory (since memory
accesses are now separate)

Execution time

Time/program = instruction av.timeto
count X execute an instruction

Time/instruction = clocks per instruction x clock period

How do we build a fast computer?

Pipelined processor

* In a similar way to that used in a multicycle processor, instructions are
broken up into say, 5 smaller steps, e.g., fetch, decode, execute ALU,
memory read/write, write register

* Since each stage is less complex it will execute about 5 times faster

* In this case, dividing the single cycle processor in to 5 ‘pipelined’ stages
means that 5 instructions can execute simultaneously, one in each stage,
i.e., the throughput is ideally 5 times greater, i.e., compared with a
conventional single cycle processor, i.e., a fetch occurs every clock cycle
in a pipelined processor compared with once every instruction in a
conventional single cycle processor

Pipelined processor

Single Cycle processor

Fetch Decode Execute Memory Wr Fetch Decode Execute
Instruction Read Reg. ALU Read/Write Rg Instruction Read Reg. ALU
Pipelined processor
Fetch Decode Execute Memory Wr
Read/Write Read Reg. ALU Read/Write Rg
Fetch Decode Execute Memory Wr
Read/Write Read Reg. ALU Read/Write Rg
Fetch Decode Execute Memory Wr
Read/Write Read Reg. ALU Read/Write Rg
Fetch Decode Execute Men
Read/Write Read Reg. ALU Read

Pipelined processor

* Note that the register file is written in the 1° part of a cycle and read in
the second part so that data can be written and read back within a single

cycle
* The central challenge is handling hazards, i.e., when the results from one
instruction are needed by a subsequent instruction before the former has

completed

* Actually, there are 2 kinds of hazards
* Data hazard —when an instruction tries to read a register that has not yet been

written back
¢ Control hazard — when the decision of what instruction to fetch next has not been

made by the time the fetch takes place
* These issues will be addressed in the Computer Architecture course!

Pipelined processor

Execute Write Back

Instruction Decode
i Address Calc.

Register Fetch Memory Access

Instruction Fetch

IF ID EX MEM wB
— — — Next PC —
E NextSEQ PC NextSEQ PC
RS1
—]
RS2
"] Register Zero
File
o
=
3 g 2 z
R[S Y] z =
PC = z 3
»
A I @ | I
A A A Reg Sel
write ena
WB Data

11

DDL Representation

DDL Representation is a structured way of showing the CPU datapath and control
signals to explain how data flows inside the processor during instruction execution.
It visually represents components such as registers, ALU, multiplexers, memory,
and control units, along with their interconnections. This makes it easier to
understand how instructions are fetched, executed, and completed. DDL is
commonly used to compare single-cycle, multi-cycle, and pipelined processors and

is an important tool for teaching CPU design and understanding processor behavior.

Exceptions

An exception occurs when the normal execution of a program is interrupted due to
an abnormal condition such as divide by zero, invalid instruction, overflow, or
memory access error. When an exception happens, the CPU saves its current state
and transfers control to the operating system’s exception handler to manage the
error. In pipelined processors, handling exceptions is more complex because
multiple instructions are in progress, so the pipeline may need to be flushed.

Exceptions are essential for maintaining system stability, correctness, and security.

12

