

1

A simple computer

CPU

Introduction to Processor

Architecture

2

A simple computer

• The example computer has a Central Processing Unit (CPU), memory
(RAM) and 2 busses (Address and Data) that connect them

• The CPU has a set of registers (usually < 100 but may be as few as 4),
that are often used to store local operands/variables/intermediate
results

• The Arithmetic Logic Unit (ALU) performs computations

• The CPU fetches instructions from the memory where the Instruction
Decoder in conjunction with the Control Unit are used to control the
elements within the CPU to execute the instructions

A simple computer

• A computer architecture is defined by its instruction set and architectural
state

• For example, for a ‘MIPS’ processor the architectural state comprises the
program counter (PC) and the 32 registers

• So, based on its current architectural state, the processor executes a
particular instruction with a particular set of data to yield a new
architectural state

• The microarchitecture is the specific arrangement of registers, ALUs, finite
state machines (FSMs), memories and other logic building blocks (e.g.,
multiplexers) needed to implement an architecture

• Note that a particular architecture can be implemented by many different
microarchitectures, each having different performance, complexity and
cost trade-offs

3

Microarchitecture

• A microarchitecture can usually be divided in to 2 interacting parts:
– Datapath: Operates on words of data, e.g., 16-bit, 32-bit, and contains

structures such as memories, , registers, ALUs and multiplexers. Note that
the program counter can be viewed as a conventional register whose
output points to the current instruction and its input indicates the address
of the next instruction.

– Instruction Decoder/Control Unit: receives the current instruction from the
- and tells the data-path how to execute that instruction, i.e., the control
unit issues multiplexer select, register enable and memory write signals to
control the operation of the data-path.

Building a simple computer

• We will now look the design of a single-cycle processor, i.e., it
executes its instructions in a single clock cycle

• We gradually develop the data-path by adding new components to
the state elements. In doing so, we gradually increase the capability
of the computer

• The instruction decoder/control unit generates the control signals
(using combinational logic) that control the data-path so that the
required instructions can be executed

• We will assume that the computer is based on word addressable
memory, e.g., 32-bit words at each memory location (address)

4

Building a simple computer – branching enable

• Including Mux enables PC to be
changed to an arbitrary value to
permit branching – detail to follow

• We will now introduce more of the
data-path

• Instruction decoder/control unit
• Registers (actually register file)

and ALU

• We will return to branching later!

Building a simple computer – fetching instructions

Address supplied from PC to
memory yields instruction to be
executed

This instruction is presented to the
rest of the data path

PC is then incremented by one
(utilising the Adder) to point to the
next instruction in the memory
Can’t write very interesting
programs!
• No branching
• No access to data in memory

5

Building a simple computer – register access
Example machine instruction format

rs1 is specified as R2, rs2 is specified as R3,
rd is specified as R1 and ALU function - ADD

ADD R1, R2, R3 ; reg1 = reg2 + reg3
010 001 010 011

Building a simple computer – memory access

xxx

010

001

LOAD R1, [R2] ; reg1=mem[reg2]

010

011 op – operation code

001 rs1 – ALU source register

 rs2 – ALU source register
 rd – ALU destination register

op rd rs1 rs2

6

Building a simple computer - branching

xxx

001

xxx

BEQZ R1, +10 ; if (R1=0) PC=PC+10

Building a simple computer – memory access

• Addition of Mux permits result to be stored in the Register File (at

destination rd specified as R1 (reg1)) to come from ALU or from Data
Memory

• Data memory address specified by ALU output

• ALU input/output is content of source register rs2 specified as R2 (reg2)

• So Data Memory output is the content of the location pointed to by R2
(reg2)

• That is

• Note source register rs1 is not required in this operation and so does not
need to be specified

LOAD R1, [R2] ; reg1=mem[reg2]

7

Building a simple computer - branching

• For example, for the branch if equal to zero instruction

• When executed a jump of 10 instructions will occur (i.e., 10 is added to

the PC) if the contents of register specified as R1 (reg1) is equal to zero

BEQZ R1, +10 ; if (reg1=0) PC=PC+10

Building a simple computer - branching

• ALU input/output is the contents of source register rs2 specified as R1

(reg1)

• ALU also has a flag output indicating if the ALU output is zero

• If a branch instruction is decoded (by the Instruction
decoder/controller) and the ALU zero flag is set, then the AND gate
output (which is the branch Mux control input) will become ‘1’ and
the input to the PC will now come from the output of the newly
introduced ‘jump’ adder

• The jump adder takes the current PC value and adds to it the required
‘jump’ value (supplied by the Instruction decoder)

8

Long
Inst.

Long
Inst.

Long
Inst.

Multicycle processor

Single Cycle processor

Min clock period
single cycle

Multicycle processor

Min clock period
multicycle

Long
Inst.

Medium
Inst.

Short
Inst.

Long
Inst.

Short
Inst.

 Medium
Inst.

 Short
Inst.

Long
Inst.

Short
Inst.

Medium
Inst.

Short
Inst.

Multicycle processor

• A single cycle processor has 3 main weaknesses:

• Clock cycle needs to be long enough to cope with slowest instruction

• Needs 3 adders – 1 in ALU and 2 in the PC logic

• Separate instruction and data memory

• In a multicycle processor:
• Instructions are broken into multiple shorter (i.e., faster) steps

• More complex instructions take more steps than simple ones, so simple
instructions execute faster than complex ones

• Need only one adder since this can be reused for different tasks in different steps

• Only one memory is required since instruction is fetched in 1st step and data may
be read or written in later steps

9

Time/program = instruction
count x

av. time to
execute an instruction

Time/instruction = clocks per instruction x clock period

Execution time

How do we build a fast computer?

Multicycle processor

• Design is more complex:

• Need to add non-architectural state elements (i.e., registers) to hold intermediate
results

• The controller is now a FSM rather than combinational logic since it has to
produce different outputs on different steps

• Advantages:
• ALU can now be reused several times

• Instructions and data can be stored in one shared memory (since memory
accesses are now separate)

10

Memory
Read/Write

Memory
Read/Write

Memory
Read/Write

Memory
Read/Write

Pipelined processor

• In a similar way to that used in a multicycle processor, instructions are

broken up into say, 5 smaller steps, e.g., fetch, decode, execute ALU,
memory read/write, write register

• Since each stage is less complex it will execute about 5 times faster

• In this case, dividing the single cycle processor in to 5 ‘pipelined’ stages
means that 5 instructions can execute simultaneously, one in each stage,
i.e., the throughput is ideally 5 times greater, i.e., compared with a
conventional single cycle processor, i.e., a fetch occurs every clock cycle
in a pipelined processor compared with once every instruction in a
conventional single cycle processor

Pipelined processor

Single Cycle processor

Pipelined processor

 Fetch
Read/Write

 Decode
Read Reg.

Execute
ALU

 Memory
Read/Write

Fetch
Instruction

Decode
Read Reg.

Execute
ALU

Memory
Read/Write

Wr
Rg

Fetch
Instruction

Decode
Read Reg.

Execute
ALU

Fetch

Read/Write
 Decode

Read Reg.
Execute

ALU
 Memory

Read/Write
Wr
Rg

Fetch

Read/Write
 Decode

Read Reg.
Execute

ALU
 Memory

Read/Write
Wr
Rg

Fetch

Read/Write
 Decode

Read Reg.
Execute

ALU
 Memory

Read/Write
Wr
Rg

11

Pipelined processor

Pipelined processor

• Note that the register file is written in the 1st part of a cycle and read in

the second part so that data can be written and read back within a single
cycle

• The central challenge is handling hazards, i.e., when the results from one
instruction are needed by a subsequent instruction before the former has
completed

• Actually, there are 2 kinds of hazards
• Data hazard – when an instruction tries to read a register that has not yet been

written back
• Control hazard – when the decision of what instruction to fetch next has not been

made by the time the fetch takes place

• These issues will be addressed in the Computer Architecture course!

12

DDL Representation

DDL Representation is a structured way of showing the CPU datapath and control

signals to explain how data flows inside the processor during instruction execution.

It visually represents components such as registers, ALU, multiplexers, memory,

and control units, along with their interconnections. This makes it easier to

understand how instructions are fetched, executed, and completed. DDL is

commonly used to compare single-cycle, multi-cycle, and pipelined processors and

is an important tool for teaching CPU design and understanding processor behavior.

Exceptions

An exception occurs when the normal execution of a program is interrupted due to

an abnormal condition such as divide by zero, invalid instruction, overflow, or

memory access error. When an exception happens, the CPU saves its current state

and transfers control to the operating system’s exception handler to manage the

error. In pipelined processors, handling exceptions is more complex because

multiple instructions are in progress, so the pipeline may need to be flushed.

Exceptions are essential for maintaining system stability, correctness, and security.

